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ABSTRACT 

Riccati differential equation is one of the most essential tools for modelling many physical situations, such as spring mass 

systems, resistor-capacitor-induction circuits, and chemical reactions among many others. It is applicable in engineering 

and science, and also useful in network synthesis and optimal control. We derived a quarter-step method for the solution of 

RDEs by collocating and interpolating the Laguerre polynomial basis function which does not require starting values 

before they are implemented and they simultaneously generate approximations at different grid points in the interval of 

integration. To show the accuracy and efficiency of our method, five (5) model RDE problems were solved and results 

obtained in terms of the point wise absolute errors shows that the method approximates well with the exact solution. The 

stability analysis conducted reveals that our method is zero-stable, consistent and convergent. 
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1. INTRODUCTION 

We consider a numerical method for solving general Ricatti differential equation of the form  

2' ( ) ( ) ( ) ( ) ( ) ( )y t a t b t y t c t y t= + +                                                                                                                 (1.1) 

0 0( )y t y=                                                                                                                                                            (1.2) 

Where ( ), ( ), ( )a t b t c t  are continuous with ( ) 0c t ≠  and 
0 0,t y  are arbitrary constants for ( )y t  which is an 

unknown function. 

The RDE in (1.1) can also be denoted by the equation below; 

'( ) ( , )y t f t y=                                                                                                                                                   (1.3) 

The conventional linear multistep method associated with equation (1.3) is given in the form  
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Where, iφ and iψ are unknown coefficients of the method to be uniquely determined. 
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A differential equation in which the unknown function is a function of two or more independent variable is called 

a Partial Differential Equations (PDEs). Those in which the unknown function is function of only one independent variable 

are called Ordinary Deferential Equations (ODEs). 

Many scholars have worked extensively on the solution of (1.1) in literatures [1-10,12, 14,15,16 and 17]. These 

authors proposed different method ranging from predictor corrector method to block method using different polynomials as 

basis functions, evaluated at some selected points. 

In this paper, we proposed three-step quarter block hybrid methodusing Leguere polynomials as a basis function, 

evaluated at grid and off-grid points to give the needed discrete schemes. These discrete schemes are then combined to 

form the block hybrid method required for implementation. 

2. METHODOLOGY 

In this section, we proposed a computational method for the solution of RDEs of the form (1.1). Themethod doesnot 

require starting values for its implementation and it generates approximations at different grid points in the interval of 

integration. Another advantage of the method is that it is less expensive in terms of function evaluations when compared to 

the LMMs or the Runge-Kutta methods. The major idea in this work is to approximate the exact solution �(�) to (1.1) on 

the partition, �[	,�] = [� = �� < �� < �� < ⋯ < �� < ���� < ⋯ < �� = �] of the quarter-step integration interval [�, �] 
by Laguerre polynomial basis function given by,  

�(�) = ���! ����� (�����)                                                                                                                                          (2.1) 

One of the advantages of the Laguerre polynomial (2.1) is that it is orthogonal with respect to the weight function !(�) = ��� on [0,∞), Raisinghania (2014). The quarter-step computational method shall be derived using interpolation 

and collocation procedures. Equation (2.1) is interpolated at a grid point; the first derivative of (2.1) is then substituted 

into (1.1) to obtain a differential system which is evaluated at all grid points. Using this technique, in the form of linear 

multistep method, we obtain linear multistep methods which are then put in block form to obtain the new quarter-step 

computational method. 

2.1 Derivation of the Generalized Computational Method 

Let the Laguerre polynomial approximate solution be given by a function of a single variable of the form,  

�(�) = ∑  $�%���&� '���! ����� (�����)( = 1 + (� − 1) + (�� − 4� + 2) + ⋯                                                             (2.2) 

Where , and - are the number of collocation and interpolation points respectively. Now, interpolating (2.2) at 

point ���% = 0 and collocating its first derivatives at points ���$ = 0(1). − 1, leads to the following system of equations,  

/0 = 1                                                                                                                                                                  (2.3) 

Where  

0 = [������⋯�$]2 ,				1 = [��4�4���⋯4��$]2 
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Equation (2.3) is then solved for the �>′- using Gaussian elimination method. The values of �>′- obtained are then 

substituted into (2.2) to give, after some manipulations, a continuous linear multistep method of the form,  

�(�) = ∑  %>&� ?>(�)���> + ℎ∑  $>&� A>(�)4��>                                                                                                       (2.4) 

Where ���> = �(�� + Bℎ) and 4��> = 4C���> , ���>D. Again, ?>(�)and A>(�) are unknown function to be 

determined and are expressed as continuous functions of E by writing.  

E = ����F                                                                                                                                                                  (2.5) 

Thus, evaluating (2.4) at � = ����, ����, ⋯ , ���$ using (2.5), we obtain a set of (, − 1) single schemes which 

can be written in the form of discrete quarter-step computational method as,  

A(�)IJ = KI� + ℎL4(��) + ℎ�M(IJ)                                                                                                                  (2.6) 

Where 

IJ = [����, ����⋯���$]2; 							I� = [���($��), ���($��)⋯��]2 

M(IJ) = [4���, 4���⋯4��$]24(��) = [4��($��), 4��($��)⋯4�]2 

0(�), K, L and � are , × , matrices.Equation (2.6) is referred to as the discrete computational method which gives 

evaluation at different grid points without overlapping. 

2.2 Derivation of Computational Method with Three Partitions 

Let the approximate solution to (1.1) be given by Laguerre polynomial of degree 5, by allowing , + - − 1 in 

equation 2.2, that is, 

�(�) = ∑  Q�&� '���! ����� (�����)( = 720 − 1800� + 1200�� − 300�8 + 30�T − �Q                                          (2.7) 

with the first derivative given by,  

�′(�) = −1800 + 2400� − 900�� + 120�8 − 5�T                                                                                           (2.8) 

Substituting (2.8) into (1.1) gives,  

4(�, �) = −1800 + 2400� − 900�� + 120�8 − 5�T                                                                                        (2.9) 

Now, interpolating (2.7) at point ���% = 0 and collocating (2.9) at points ���$ , , = 0 V ��WX �T, leads to a system of 

nonlinear equation of the form (2.3), where  

0 = [��	, ��	, ��	, �8	, �T	, �Q]2 
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1 = Y�� , 4�, 4�� ��W, 4���Z, 4�� 8�W, 4���T[2 

/ =

56
66
66
66
67720 −1800�� 1200��� −300��8 30��T −��Q0 −1800 2400��� −900��� 120��8 −5��T0 −1800 2400��� ��W −900��� ��W

� −120��� ��W
8 −5��� ��W

T
0 −1800 2400����Z −900����Z� −120����Z8 −5����ZT
0 −1800 2400��� 8�W −900��� 8�W

� −120��� 8�W
8 −5��� 8�W

T
0 −1800 2400����T −900����T� −120����T8 −5����TT ;<

<<
<<
<<
<=
 

Which yields the following matrices  

\
]]
]]
]]̂
720 								0 		0 				0 0 						00 −18000 		0 				0 0 						00 −18000 150 − 22564 − 15512 − 5655360 −18000 300 − 22516 1564 − 540960 −18000 450 − 202564 405512 − 405655360 −18000 600 − 2254 158 − 5256 _

`̀
`̀
`̀
a

\
]]̂
�����8�T�Q�W_
`̀a =

\
]]
]]̂
��4�4�� ��W4���Z4�� 8�W4���T _

`̀
`̀
a

 

Solving (2.3) by Gaussian elimination method for the �> ′-, B = 0(1)5 and substituting back into the Laguerre 

polynomial basis function gives a quarter-step method of the form,  

�(�) = ?�(�)�� + ℎ∑  
bc>&� A>(�)4��> , B = 0 V ��WX �T                                                                                           (2.10) 

Where the coefficients of �� and 4��> are give as, 

d

?� = 1A� = �TQ (24576EQ − 19200ET + 5600E8 − 750E� + 45E)Abbe = 8�TQ (−3072EQ + 2160ET − 520E8 + 45E�)
Abf = − Z�Q (−6144EQ + 3840ET − 760E8 + 45E�)Agbe = −3072EQ + 1680ET − 280E8 + 15E�
Abc = − �TQ (−12288EQ + 5760ET − 880E8 + 45E�) hi

iii
j
iii
ik

                                                                             (2.11) 

And E is given by (2.5). Evaluating (2.10) at E = ��W V Z�WX �Tgives a discrete quarter-step computational method of 

the form (2.6). 
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d
���� = �� + ���l�TQ ℎ4� + �T�Q��Q ℎ4��bf − Q8��TTQ ℎ4�� gbe + �Tl�WTQ ℎ4��bc − TT8ZTTQ ℎ4�� bbe��� bbe = �� + �Q���Q��ℎ4� − ��TZ�ℎ4��bf + Q8QlW�ℎ4 gbe − �m��Q��ℎ4bc + 8�8QlW�ℎ4�� bbe���bf = �� + �m�TT�ℎ4� + �W� ℎ4��bf + �8W�ℎ4�� gbe − ��TT�ℎ4��bc + 8�8W�ℎ4�� bbe��� gbe = �� + �l��Z�ℎ4� + m�W�ℎ4��bf + ��WT�ℎ4�� gbe − 8��Z�ℎ4��bc + Q�WT�ℎ4�� bbe���bc = �� + l8W�ℎ4� + 1/30ℎ4bf + TTQℎ4�� gbe + l8W�ℎ4��bc + TTQℎ4�� bbe hi

ii
j
ii
ik

                                     (2.12) 

3. ANALYSIS OF THE METHOD 

3.1 Order of the Method 

The equation (1.4) associated with lineardifference operator ois defined by:  

o[�(�): ℎ] = ∑  q>&� [?>�(�� + Bℎ) − ℎA>�′(�� + Bℎ)]                                                                                         (3.1) 

Where �(�) is an arbitrary test function that is continuously differentiable in the interval [�, �]. Expanding �(�� + Bℎ) and �′(�� + Bℎ) in Taylor series about �� and collecting like terms in ℎ and �(�) gives:  

o[�(�): ℎ] = r��(�) + r�(�)ℎ�′(�) + r�(�)�(�) + ⋯+ rsℎs�s(�)                                                                      (3.2) 

Accordingly, following [11] and [14], the differential operator and its associated Linear Multistep Method are said 

to be of order t if:  

r� = r� = r� = ⋯rs = rs�� = 0, rs�� ≠ 0 

The term vs�� is called error constant and it implies that the local truncation error is given by  

K��q = rs��ℎs���s��(��) + 0(ℎs��) 
3.2 Consistency 

In the spirit of [13], the linear multistep method is said to be Consistent if it has order t ≥ 1. Analysis of our method 

shows that it is consistent since its order t = 5 > 1 (see table 4.6) 

3.3 Zero-Stability 

The linear Multistep Method is said to be zerostable if no root of the first characteristic polynomial has modulus greater 

than one and if every root with modulus is simple. 

The hybrid block method is said to be stable if the root y of the characteristic polynomial t̅(y), defined by:  

{(|) = det[|0 − 0�] 
satisfies ||| ≤ 1 and every root with |y�| = 1 has multiplicity not exceeding two in the limit as � → 0. 

Theorem 1.1 The necessary and sufficient condition for a method to be convergent is for it to be consistent and 

zero stable 
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3.4 Stability of the Computational Method 

3.4.1 Stability of the Computational Method with Three Partitions 

The equation (3.12) when put together formed the block as  

566
671 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1;<

<<=

56
666
66
7������� ��W����Z��� 8�W����T ;<

<<<
<<
=
=
566
670 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 1;<

<<=
56
666
7���T���8���������� ;<

<<<
=
 

+ℎ

56
66
66
66
66
72415215 5302445 1472645 443844511480 535760 1911520 3235760160 1360 11440 313609160 21640 31280 51640130 445 7360 445 ;<

<<
<<
<<
<<
=

56
66
66
674���4�� ��W4���Z4�� 8�W4���T ;<

<<
<<
<=
 

+ℎ

56
66
66
66
66
70 0 0 0 10271450 0 0 0 251115200 0 0 0 2914400 0 0 0 2712800 0 0 0 7360 ;<

<<
<<
<<
<<
=

56
66
674��T4��84���4���4� ;<

<<
<=
 

normalizing the matrix as ℎ → 0 

{(�) = [�0� − 0] 

566
67� 0 0 0 00 � 0 0 00 0 � 0 00 0 0 � 00 0 0 0 �;<

<<= − 566
670 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 1;<

<<= = 566
67� 0 0 0 −10 � 0 0 −10 0 � 0 −10 0 0 � −10 0 0 � −1;<

<<= 
�T(� − 1) = 0 

That is �� = 1, 	�� = �8 = �T = �Q = 0 

3.5 Convergence 

ALMM is said to be convergent if it is consistent and zero stable. 

From the analysis on zero stability above and in addition to table 4.6, we conclude that our method is both 

consistent and zero stable, hence convergent. 
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4. NUMERICAL EXAMPLES 

The computational method derived shall be applied to some modeled RDEs to test for accuracy and efficiency. 

Problem 4.1 

Consider the following quadratic Riccati differential equation (RDE).  

�L�LE = 2�(E) − E�(E) + 1� L�LE = −��(E) + 1 

subject to the initial condition  

�(0) = 0 

with theoreticalsolution given as 

�(E) = ��� − 1��� + 1 

Problem 4.2 

Given the RDE 

L�LE = 2�(E) − �� + 1 

with initial condition  

�(0) = 0 

and theoretical solution obtained thus, 

�(E) = 1 + √2tanh�√2E + 12 log �√2 − 1√2 + 1�� 

Problem 4.3 

Consider the following nonlinear fractional Riccati differential equation  

�∝�(E) = 1 + 2�(E) − ��(E), 0 < 0�1 

and initial condition  

�(0) = 0 

the theoretical solution for ∝= 1 was found to be  

�(E) = 1 + √2tanh(√2E + 12 ��� √2 − 1√2 + 1), 
Problem 4.4 

Let us consider the problem 
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���(�) = 1 − ��(�), 0 ≤ � ≤ 1;�(0) = 0. d, 
The theoretical solution is  

1(�) = ��� − 1��� + 1, 
Problem 4.5 

Consider a Riccati differential equation with constant coefficients gien as 

��(E) = ��(E) − �(E),					�(0) = 0, 
The theoretical solution for this problem is 

� = ���1 + ��� , 
Table 4.1: Numerical Results for Problem 4.1 

t-value Theoretical Solution Approximate Abs Error  Time  
0.1000 0.42188080599029 0.42188080599029 1.6653e-16 0.0358 
0.2000 0.65507140458179 0.65507140458179 3.3307e-16 0.0495 
0.3000 0.84956591586548 0.84956591586548 3.3307e-16 0.0631 
0.4000 1.01845953531826 1.01845953531826 4.4409e-16 0.0736 
0.5000 1.16698055323955 1.16698055323955 4.4409e-16 0.0865 
0.6000 1.29820152510130 1.29820152510130 6.6613e-16 0.0950 
0.7000 1.41436135877797 1.41436135877797 6.6613e-16 0.1028 
0.8000 1.51728483742558 1.51728483742558 6.6613e-16 0.1109 
0.9000 1.60853886960997 1.60853886960997 6.6613e-16 0.1207 
1.0000 1.68949839159438 1.68949839159438 6.6613e-16 0.1275 

 
Table 4.2: Numerical Results for Problem 4.2 

t-value Theoretical Solution Approximate Abs Error  Time  
0.1000 0.09966799462496 0.09967169539817 3.7008e-06 0.0418 
0.2000 0.19737532022490 0.19738963167954 1.4311e-05 0.0543 
0.3000 0.29131261245159 0.29134303769860 3.0425e-05 0.0680 
0.4000 0.37994896225523 0.37999898473952 5.0022e-05 0.0803 
0.5000 0.46211715726001 0.46218801205332 7.0855e-05 0.0907 
0.6000 0.53704956699804 0.53714038396459 9.0817e-05 0.1301 
0.7000 0.60436777711716 0.60447600054929 1.0822e-04 0.1404 
0.8000 0.66403677026785 0.66415872119655 1.2195e-04 0.1504 
0.9000 0.71629787019902 0.71642932361034 1.3145e-04 0.1603 
1.0000 0.76159415595577 0.76173083991998 1.3668e-04 0.1697 

 
Table 4.3: Numerical Results for Problem 4.3 

t-value Theoretical Solution Approximate  Abs Error  Time  
0.1000 0.90909090909091 0.90902868973486 6.2219e-05 0.0361 
0.2000 0.83333333333333 0.83322783539319 1.0550e-04 0.0459 
0.3000 0.76923076923077 0.76909402754165 1.3674e-04 0.0576 
0.4000 0.71428571428571 0.71412555961818 1.6015e-04 0.0646 
0.5000 0.66666666666667 0.66648827625894 1.7839e-04 0.0746 
0.6000 0.62500000000000 0.62480682274283 1.9318e-04 0.0853 
0.7000 0.58823529411765 0.58802962114848 2.0567e-04 0.0950 
0.8000 0.55555555555556 0.55533888221389 2.1667e-04 0.1048 
0.9000 0.52631578947368 0.52608905048065 2.2674e-04 0.1145 
1.0000 0.50000000000000 0.49976372539295 2.3627e-04 0.1223 
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Table 4.4: Numerical Results for Problem 4.4 
t-value Theoretical Solution Approximate Abs Error  Time  
0.1000 1.12295995501999 1.12295995501999 5.6155e-13 0.0369 
0.2000 2.33036366723934 2.33036366723934 1.1653e-12 0.0506 
0.3000 3.35929859139219 3.35929859139219 1.6800e-12 0.0642 
0.4000 4.07625619989395 4.07625619989395 2.0384e-12 0.0750 
0.5000 4.50864023794231 4.50864023794231 2.2542e-12 0.0876 
0.6000 4.74705986375187 4.74705986375187 2.3741e-12 0.0972 
0.7000 4.87206646548955 4.87206646548955 2.4363e-12 0.1066 
0.8000 4.93588015111826 4.93588015111826 2.4682e-12 0.1160 
0.9000 4.96801151790818 4.96801151790818 2.4842e-12 0.1268 
1.0000 4.98407836223864 4.98407836223864 2.4922e-12 0.1343 

 
Table 4.5: Numerical Results for Problem 4.5 

t-value Theoretical Solution Approximate  Abs Error  Time  
0.1000 -0.09966799462496 -0.09966799462496 2.1917e-010 0.0307 
0.2000 -0.19737532022490 -0.19737532022490 1.6820e-009 0.0423 
0.3000 -0.29131261245159 -0.29131261245159 5.3018e-009 0.0549 
0.4000 -0.37994896225523 -0.37994896225523 1.1443e-008 0.0661 
0.5000 -0.46211715726001 -0.46211715726001 1.9872e-008 0.0754 
0.6000 -0.53704956699804 -0.53704956699804 2.9881e-008 0.0852 
0.7000 -0.60436777711716 -0.60436777711716 4.0496e-008 0.0937 
0.8000 -0.66403677026785 -0.66403677026785 5.0713e-008 0.1008 
0.9000 -0.71629787019902 -0.71629787019902 5.9682e-008 0.1064 
1.0000 -0.76159415595577 -0.76159415595577 6.6810e-008 0.1159 

 
Table 4.6: Order and Error Constants of the New Computational Method 

Point of Evaluation rs�� Error Constant  ���� 5 
393655360 

��� ��W 5 
32684354560 

����Z 5 
11509949440 

��� 8�W 5 
32684354560 

����T 5 − 131708938240 

 
5. CONCLUTIONS 

The desirable property of a numerical solution is to behave like the theoretical solution, that is, a good numerical solution 

is one which always converges to its theoretical solution as h → 0. This is an essential property that all numerical methods 

should possess. We are therefore very confident in presenting our results in table 4.1 to table 4.5. In all the examples 

provided, our method tends to converge to its theoretical solution faster, making it one of the favorable methods to be 

considered in solving real life problems. We therefore recommend our method to the scientific world for further 

investigation and application.  
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