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ABSTRACT

Riccati differential equation is one of the mostesgial tools for modelling many physical situaspauch as spring mass
systems, resistor-capacitor-induction circuits, asftemical reactions among many others. It is aplie in engineering
and science, and also useful in network synthesisoptimal control. We derived a quarter-step mdtfar the solution of
RDEs by collocating and interpolating the Laguepelynomial basis function which does not requirartstg values
before they are implemented and they simultaneaesherate approximations at different grid pointsthe interval of
integration. To show the accuracy and efficiencyof method, five (5) model RDE problems were sob#ad results
obtained in terms of the point wise absolute ersiiews that the method approximates well with steetesolution. The

stability analysis conducted reveals that our mdtlsozero-stable, consistent and convergent.
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1. INTRODUCTION

We consider a numerical method for solving genRiedtti differential equation of the form
y'(t) =a(t)+b(t) y(O+ o) y() 1.1
y(t) = Yo 1.2)

Where a(t), b(t), c(t) are continuous witlc(t) #0 andt , y, are arbitrary constants foy(t) which is an

unknown function.

The RDE in (1.1) can also be denoted by the equdiibow;
y'(t)= f(t,y) (1.3)

The conventiondinear multistep method associated with equatioB)(i given in the form

k k
ZWYM = hzw| fn+i (1.4)
i=0 i=0
Where, @ and ¢/, are unknown coefficients of the method to be uriigdetermined.
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12 Andefiki, J, Awari, Y. S& Shallom, D

A differential equation in which the unknown furmaiiis a function of two or more independent vagablcalled
a Partial Differential Equations (PDESs). Those imak the unknown function is function of only omelependent variable
are called Ordinary Deferential Equations (ODES).

Many scholars have worked extensively on the smhutf (1.1) in literatures [1-10,12, 14,15,16 arg. These
authors proposed different method ranging from iptedcorrector method to block method using def@rpolynomials as

basis functions, evaluated at some selected points.

In this paper, we proposed three-step quarter bhybkid methodusing Leguere polynomials as a Hasistion,
evaluated at grid and off-grid points to give treeded discrete schemes. These discrete schemtégareombined to
form the block hybrid method required for implenagitn.

2. METHODOLOGY

In this section, we proposed a computational metioodhe solution of RDEs of the forrfl.1). Themethod doesnot
require starting values for its implementation andenerates approximations at different grid poiimt the interval of
integration. Another advantage of the method isitha less expensive in terms of function evatluad when compared to
the LMMs or the Runge-Kutta methods. The major intethis work is to approximate the exact solutjaix) to (1.1) on
the partition,mp, ;) = [@a = %o < x; < xp <+ < Xxp < Xpyq <+ < xy = b] of the quarter-step integration interyaj b]

by Laguerre polynomial basis function given by,

e dn

y(x) = —-=(x"e™) (2.1)

n! dxm

One of the advantages of the Laguerre polyno(2idl) is that it is orthogonal with respect to the weifyimction
w(x) = e * on [0, ), Raisinghania (2014). The quarter-step computatiomethod shall be derived using interpolation
and collocation procedures. Equati@h1) is interpolated at a grid point; the first derivatof (2.1) is then substituted
into (1.1) to obtain a differential system which is evaluas&dll grid points. Using this technique, in tloenfi of linear
multistep method, we obtain linear multistep methedich are then put in block form to obtain thevnguarter-step

computational method.

2.1 Derivation of the Generalized Computational Mdtod

Let the Laguerre polynomial approximate solutiorgbeen by a function of a single variable of thenfip
Y0 = B [im e ] S 1+ - D 0P e @2
Wherer ands are the number of collocation and interpolatiomfsorespectively. Now, interpolatin@®.2) at

pointx,,s = 0 and collocating its first derivatives at points,,, = 0(1)k — 1, leads to the following system of equations,
XA=U (2.3)
Where

A= [a0a1a2 ar]Tr U= [ynfnfn+1 "'fn+r]T
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(X Xn Xn o Xy Xy

0 1 2x, 3x2 e (N1
X =

0 1 2Xn4r 3x‘rzl+‘r (N)xvql-;‘rl

Equation(2.3) is then solved for the;s using Gaussian elimination method. The values;sfobtained are then

substituted intq2.2) to give, after some manipulations, a continuowesdr multistep method of the form,
y(x) = Xico () Yn+j + hEjo Bi(X)fn+; (2.4)

Where y,,; = y(x, +jh) and f,,; = f(xn+j,yn+j). Again, a;(x)and B;(x) are unknown function to be

determined and are expressed as continuous fusaifarby writing.

(2.5)

Thus, evaluating2.4) atx = x,,41, Xp42, ***, Xner USING(2.5), we obtain a set ofr — 1) single schemes which

can be written in the form of discrete quarter-stemputational method as,
A®Y = EY, + hdf (y,) + hbF(Y,,) (2.6)
Where
Y = Dnsv Yz = Vnarls Yo = Dnegran) Ynoirey = Vnl”
F(Ym) = [furrs fovz = foar) f On) = Ufnmo-1) frmr-2y = ful

A©® E,d andb arer x r matrices.Equatiofi2.6) is referred to as the discrete computational neethbich gives

evaluation at different grid points without oveneémg.
2.2 Derivation of Computational Method with Three Rartitions

Let the approximate solution td.1) be given by Laguerre polynomial of degrgeby allowingr + s —1 in

equation2.2, that is,

e* dn

y(x) =35, [n! - (x"e_x)] = 720 — 1800x + 1200x2 — 300x> + 30x* — x5 2.7)
with the first derivative given by,
y'(x) = —1800 + 2400x — 900x? + 120x3 — 5x* (2.8)
Substituting(2.8) into (1.1) gives,
f(x,y) = —1800 + 2400x — 900x? + 120x3 — 5x* (2.9)
Now, interpolating(2.7) at pointx,,; = 0 and collocating2.9) at pointsx,,,,7r =0 (%) i, leads to a system of

nonlinear equation of the for(2.3), where

— T
A= [aO'aliaZ ,a3,a4,a5]
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T

U= yn'fn'fn+%'fn+%'fn+%'fn+%

(720 —1800x, 1200x2
0 —1800 2400x2
0 —1800 2400x 1
Tl+E
X=i0 —1800 2400x 1
Tl+§
0 —1800 2400x 3
Tl+E
0 —1800 2400x 1
| Tl+Z
Which yields the following matrices
720 0 0 0
0 —18000 O 0
0 18000 150 225
64
0 18000 300 225
16
0 18000 450 2025
64
225
0 —18000 600 =

—300x
—900x
—900x

—900x
—900x

—900x

0

0
15

512
15

64
405

512
15
8

3 30x}
2 q20x3

2 —120x% 4

H+E n+
2 3
1 —120x
n+g n+
8
2 3
H+E

—120x3

n+

—120x3
n+

ENEEY

2
n+

0
0

__>s a
65536 /az\
5

4096
405

T 65536 | \a
5

256

e

16
1
8
3
16

1
1
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4
—5x,
—5X4 1

H+E
—5x4 1

n+8
—5X4 3

H+E

—5x*
n+

Yn
(fn W
f i
16
f s

| “n+5 |
[ £ 3|

ot/

1
4 B

Solving (2.3) by Gaussian elimination method for thgs,j = 0(1)5 and substituting back into the Laguerre

polynomial basis function gives a quarter-step metbf the form,

y(x) = ag(x)y, + hZsz BiG) farj J =0 (i)l

4

Where the coefficients of, andf, . ; are give as,

(10=1

Bo = 4—15(24576t5 —19200t* + 5600¢3 — 750t2 + 45¢)

B =22(=3072t5 + 2160t* — 520¢> + 45t2)
16

ﬁ%=
/3%=
ﬁ%=

— 2 (—6144t5 + 3840t* — 760t + 45t%)
—3072¢5 + 1680¢* — 280¢3 + 15¢2

— 2 (—12288¢° + 5760t* — 880¢° + 45¢%)

(2.10)

(2.11)

And t is given by(2.5). Evaluating(2.10) att = i( )%gives a discrete quarter-step computational metfod

the form(2.6).
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10271 24152 53024 14726 44384

Yner = Yo+ 5 i+ T b = SR s A R R
Vard = Yo+ T hfu = Ehfn% hf_ r:zohfz + %hf,HL
Vsl =Y+ %hfn + ihfn+1 + %hfﬂ_ - mhfn+_ + %hfﬂ_ 2.12)
Yz = Yn+ o+ g hf 3+ SRS 3 = kS SRS
Yok =+ 55 L hf, + 1/30Rf1 + 2 hfn+3 + = hfn+ L+ — hfn+_
3. ANALYSIS OF THE METHOD
3.1 Order of the Method
The equation (1.4) associated with lineardifferemperatorLis defined by:
Ly(x): h] = Efp [y + jh) — hp;y (xn + jh)] (3.1

Where y(x) is an arbitrary test function that is continuousli§ferentiable in the intervala, b]. Expanding

y(x, + jh) andy'(x, + jh) in Taylor series about, and collecting like terms ih andy(x) gives:

LIy(0):h] = coy(x) + ¢ hy (%) + ¢5y(x) + - + ¢, hPyP (x) 3.2)

Accordingly, following [11] and [14], the differeial operator and its associated Linear Multistefgtidd are said
to be of ordep if:

Co=0C=0C="Cp=0Cpe1=0,Cp41 0
The termC,,, is called error constant and it implies that theal truncation error is given by
Ensic = CprahPH1yPH1(x,) + O(AP*2)
3.2 Consistency

In the spirit of [13], the linear multistep methadsaid to be Consistent if it has orgek 1. Analysis of our method

shows that it is consistent since its order 5 > 1 (see table 4.6)
3.3 Zero-Stability

The linear Multistep Method is said to be zerostabino root of the first characteristic polynomtas modulus greater

than one and if every root with modulus is simple.
The hybrid block method is said to be stable ifrihet z of the characteristic polynomialz), defined by:
p(R) = det[RA — A']
satisfies|R| < 1 and every root witlz,| = 1 has multiplicity not exceeding two in the limitas- 0.

Theorem 1.1The necessary and sufficient condition for a meéttmobe convergent is for it to be consistent and

zero stable

www.iaset.us editor @ aset.us
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3.4 Stability of the Computational Method

3.4.1 Stability of the Computational Method with Three Partitions

The equatior{3.12) when put together formed the block as

Andefiki, J, Awari, Y. S& Shallom, D

(Vn+1 7
100 0 07Yne 00001?"4
010 0 0fly 1 000 o0 1|73
n+g | _ Yn-2
0 0 1 0 0f)y 51=0 0 0 0 1j|3
l0 00 1 0J| "*76 |l0 000 1J||y"‘1
00 0 0 ¥yl 00 o0 o u™"
124152 53024 14726 44384
15 45 45 45 |[fa+1 ]
11 53 19 323 ||f .1
- n+E
480 5760 11520 5760 ||
ME 1 1 31 nts
60 360 1440 360 |If .3
9 21 3 51 ¢ 16
160 640 1280 640 n+g
1 4 7 4 I
30 45 360 45
0 0 o o L0271
45
251 |[fna
0000 11520[71—3]
29l fa-z|
+hlo 0 0 0 —— ||I/7?
1440 [|fo1
000 0 X I |
280 |L |
000 0 —
360
normalizing the matrix ak — 0
p(Z) = [ZA° — A]
Z 0 0 0 07 0000 1] Z 0 0 0 -1
[ozooo}[ooooﬂ[ozoo-ﬂ
0 0z o0 ol-lo oo o 1l=lo 0 z o0 -1
l[OOOZOJlll()OOOlJll[OOOZ_lJl
0000z bbooo1 ooz -1
Z*(Z-1)=0

ThatlSlel, ZZ =Z3 =Z4:ZS =0
3.5 Convergence
ALMM is said to be convergent if it is consistenidezero stable.

From the analysis on zero stability above and iditamh to table 4.6, we conclude that our methodadsh

consistent and zero stable, hence convergent.
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4. NUMERICAL EXAMPLES
The computational method derived shall be appliesbime modeled RDEs to test for accuracy and effigi.
Problem 4.1

Consider the following quadratic Riccati differexttequation (RDE).

(2—3; =2y(t) —t2(t) + 1)% =—y*(t)+1
subject to the initial condition
y(0) =0
with theoreticalsolution given as
e?t —1
y() = pETanEY

Problem 4.2

Given the RDE

dy 5
E—Zy(t)—y +1

with initial condition
y(0)=0

and theoretical solution obtained thus,

y(t) = 1+ V2tanh | V2t + %log (ﬁ — 1)

V2+1
Problem 4.3
Consider the following nonlinear fractional Riccdifferential equation
D*y(t) = 1+ 2y(t) — y2(t),0 < On1
and initial condition
y(0) =0

the theoretical solution fax= 1 was found to be

1, V2-1
y) =1+ \/Ztanh(\/ﬂ+zlog

V2 + 1)'

Problem 4.4

Let us consider the problem

wWww.iaset.us editor@aset.us
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{u’(x) =1-u?(x),0<x<1;

u(0) = 0.

The theoretical solution is

Problem 4.5

U(x)

e?* -1

e+

)

Consider a Riccati differential equation with camtcoefficients gien as

y'(t) = y*(@) — y(t),

The theoretical solution for this problem is

y

e—t

1+et

y(0) =0,

Table 4.1: Numerical Results for Problem 4.1

Andefiki, J, Awari, Y. S& Shallom, D

t-value | Theoretical Solution Approximate Abs Error | Time
0.1000| 0.42188080599029 0.42188080599029 1.6653e016358
0.2000| 0.65507140458179 0.65507140458179 3.3307e01®495
0.3000| 0.84956591586548 0.84956591586548 3.3307e01@631
0.4000| 1.01845953531826 1.01845953531826 4.4409e016736
0.5000| 1.16698055323954 1.16698055323P55 4.4409e01@865
0.6000| 1.2982015251013( 1.29820152510130 6.6613e01@950
0.7000| 1.41436135877797 1.41436135877[(97 6.6613e016028
0.8000| 1.51728483742559 1.51728483742558 6.6613e016109
0.9000| 1.60853886960997 1.60853886960P97 6.6613e016207
1.0000| 1.68949839159434 1.68949839159438 6.6613e016275
Table 4.2: Numerical Results for Problem 4.2
t-value | Theoretical Solution Approximate Abs Error | Time
0.1000| 0.09966799462496 0.09967169539817 3.7008e008418
0.2000| 0.19737532022490 0.19738963167954 1.4311e00B643
0.3000| 0.29131261245159 0.29134303769860 3.0425e008680
0.4000| 0.37994896225523 0.37999898473D52 5.0022e008803
0.5000| 0.46211715726001 0.46218801205332 7.0855e008007
0.6000| 0.53704956699804 0.53714038396459 9.0817e00E301
0.7000| 0.60436777711716 0.60447600054P29 1.0822e008404
0.8000| 0.6640367702678% 0.66415872119655 1.2195e008504
0.9000| 0.71629787019902 0.71642932361034 1.314H5e008603
1.0000| 0.76159415595577 0.76173083991P98 1.3668e008697
Table 4.3: Numerical Results for Problem 4.3
t-value | Theoretical Solution Approximate Abs Error | Time
0.1000 0.90909090909091 0.90902868973486 6.2219e006361
0.2000 0.83333333333333 0.83322783539819 1.0550ed)@459
0.3000 0.76923076923077 0.76909402754165 1.3674ed)@576
0.4000 0.71428571428571 0.71412555961818 1.6015ed)@646
0.5000 0.66666666666661 0.66648827625894 1.7839ed0@746
0.6000 0.62500000000000 0.62480682274283 1.9318e60@853
0.7000 0.58823529411765 0.58802962114848 2.0567ed)@950
0.8000 0.55555555555554 0.55533888221889 2.1667ed4048
0.9000 0.52631578947368 0.52608905048065 2.2674e@4145
1.0000 0.50000000000000 0.49976372539295 2.3627ed04223

Impact Factor (JCC): 5.3784
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Table 4.4: Numerical Results for Problem 4.4

t-value | Theoretical Solution Approximate Abs Error | Time
0.1000| 1.12295995501999| 1.12295995501999 5.6155e-13 0.0369
0.2000| 2.33036366723934| 2.33036366723934 1.1653e-12 0.0506
0.3000| 3.35929859139219  3.35929859139P19 1.6800e012642
0.4000| 4.0762561998939% 4.07625619989395 2.0384e01@750
0.5000| 4.50864023794231 4.50864023794p31 2.2542e010876
0.6000| 4.74705986375187 4.74705986375187 2.3741e012972
0.7000| 4.8720664654895% 4.872066465480955 2.4363e01P066
0.8000| 4.93588015111826 4.93588015111826 2.4682e01P160
0.9000| 4.96801151790818 4.96801151790818 2.4842e01P268
1.0000| 4.98407836223864  4.98407836223864 2.49272e01P343

Table 4.5: Numerical Results for Problem 4.5

t-value | Theoretical Solution Approximate Abs Error | Time

0.1000| -0.09966799462496 -0.09966799462496 2.1010e- 0.0307|
0.2000| -0.19737532022490 -0.19737532022490 1.6820e-009 0.0423
0.3000| -0.29131261245159 -0.29131261245159 5.3008¢- 0.0549
0.4000| -0.37994896225528 -0.37994896225523 1.1088e- 0.0661
0.5000| -0.46211715726001 -0.46211715726001 1.9872e-008 0.0754
0.6000| -0.5370495669980 -0.53704956699804 2.988%e- 0.0852
0.7000| -0.6043677771171 -0.60436777711716 4.00808e- 0.0937
0.8000| -0.6640367702678 -0.66403677026[/85 5.0008e- 0.1008
0.9000| -0.7162978701990 -0.71629787019p02 5.9683¢- 0.1064
1.0000| -0.7615941559557 -0.76159415595677 6.6808e- 0.1159

NI TUOUTNTO =

Table 4.6: Order and Error Constants of the New Corputational Method

Point of Evaluation Cpi1 Error Constant
. c 393
mH 655360
X 1 5 3
16 2684354560
1
X 1 5 - -
- 1509949440
x .3 5 3
16 2684354560
1
x 1 5 - -
" 31708938240

5. CONCLUTIONS

The desirable property of a numerical solutiorid©éhave like the theoretical solution, that igoad numerical solution
is one which always converges to its theoretichltemm ash — 0. This is an essential property that all numerinathods
should possess. We are therefore very confidemprésenting our results in table 4.1 to table 4nball the examples
provided, our method tends to converge to its tieal solution faster, making it one of the falwdeamethods to be
considered in solving real life problems. We theref recommend our method to the scientific world forther

investigation and application.
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